
Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-1 1-1 1-1

Data Structures

Lesson 12

BSc in Computer Science

University of New York, Tirana

Assoc. Prof. Marenglen Biba

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Chapter 10

Fun and Games

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Word search puzzle

• The input to the word search puzzle problem is a two-

dimensional array of characters and a list of words, and the

object is to find the words in the grid.

• These words may be horizontal, vertical, or diagonal in any

direction (for a total of eight directions).

1-3

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Brute force algorithm

For each word W in the word list

for each row R

 for each column C

 for each direction D

 check if W exists at row R, column C in

 direction D.

1-4

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-5

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Complexity

• Because there are eight directions, this algorithm requires eight

word/row/column (8WRC) checks.

• Typical puzzles published in magazines feature 40 or so words

and a 16 x 16 grid, which involves roughly 80,000 checks.

• That number is certainly easy to compute on any modern

machine.

• Suppose, however, that we consider the variation in which only

the puzzle board is given and the word list is essentially an

English dictionary.

• In this case, the number of words might be 40,000 instead of 40,

resulting in 80,000,000 checks.

• Doubling the grid would require 320,000,000 checks, which is

no longer a trivial calculation.

1-6

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Alternative algorithm
for each row R

 for each column C

 for each direction D

 for each word length L

 check if L chars starting at row R

 column C in direction D form a word

1-7

This algorithm rearranges the loop to avoid searching for every

word in the word list.

If we assume that words are limited to 20 characters, the number

of checks used by the algorithm is 160 RC. For a 32 x 32 puzzle,

this number is roughly 160,000 checks.

The problem, of course, is that we must now decide whether a

word is in the word list.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Finding a word in a list
• How to decide whether a word is in the word list?

• If we use a linear search, we lose.

• If we use a good data structure, we can expect an efficient

search.

• If the word list is sorted, which is to be expected for an online

dictionary, we can use a binary search and perform each check

in roughly logW string comparisons.

– For 40,000 words, doing so involves perhaps 16

comparisons per check

• for a total of less than 3,000,000 string comparisons

(16x160RC = 160x16x32x32=2.621.440).

• This number of comparisons can certainly be done in a

few seconds and is a factor of 100 better than the

previous algorithm.

1-8

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Improved algorithm

• We can further improve the algorithm based on the

following observation.

• Suppose that we are searching in some direction and see

the character sequence qx. An English dictionary will not

contain any words beginning with qx.

• So is it worth continuing the innermost loop (over all word

lengths)?

• The answer obviously is no: If we detect a character

sequence that is not a prefix of any word in the dictionary,

we can immediately look in another direction.

1-9

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Improved algorithm

for each row R

 for each column C

 for each direction D

 for each word length L

 check if L chars starting at row R column C in

 direction D form a word

 if they do not form a prefix,

break; // the innermost

1-10

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-11

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-12

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-13

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-14

If not sorted, it does

not add the word

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-15

Put in every row the

array of characters

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-16

We give a direction by indicating a column direction and then a row direction.

For instance, south is indicated by cd=0 and rd=l and northeast by cd=l and rd=-

l; cd can range from -1 to 1 and rd from -1 to 1, except that both cannot be 0

simultaneously.

8 directions

cd rd

1 0

1 1

1 -1

0 1

0 -1

-1 0

-1 1

-1 -1

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-17

This specifies direction!

No prefix found

A prefix found but not a

match

Either not found, prefix,

or match

Match found

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-18

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Tic-Tac-Toe

1-19

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Tic-Tac-Toe

1-20

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Minimax

• Minimax (sometimes minmax) is a decision rule used in

decision theory, game theory, statistics and philosophy for

minimizing the possible loss for a worst case (maximum

loss) scenario.

• Alternatively, it can be thought of as maximizing the

minimum gain (maximin).

• Originally formulated for two-player zero-sum game

theory, covering both the cases where players take

alternate moves and those where they make simultaneous

moves, it has also been extended to more complex games

and to general decision making in the presence of

uncertainty.

1-21

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Minimax Theorem

• In the theory of simultaneous games, a minimax strategy

is a mixed strategy which is part of the solution to a

zero-sum game.

• In zero-sum games, the minimax solution is the same as

the Nash equilibrium.

• This theorem was established by John von Neumann

1-22

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Minimax Theorem

Minimax theorem

• For every two-person, zero-sum game with finitely

many strategies, there exists a value V and a mixed

strategy for each player, such that

– (a) Given player 2's strategy, the best payoff

possible for player 1 is V, and

– (b) Given player 1's strategy, the best payoff

possible for player 2 is −V.

1-23

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Minimax Theorem

• Equivalently, Player 1's strategy guarantees him a payoff of V

regardless of Player 2's strategy, and similarly Player 2 can

guarantee himself a payoff of −V.

• The name minimax arises because each player minimizes the

maximum payoff possible for the other — since the game is

zero-sum, he also maximizes his own minimum payoff.

1-24

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Minimax strategy

• The strategy used is the minimax strategy, which is based

on the assumption of optimal play by both players.

• The value of a position is a COMPUTER_WIN if optimal

play implies that the computer can force a win.

• If the computer can force a draw but not a win, the value is

DRAW; if the human player can force a win, the value is

HUMAN_WIN.

• We want the computer to win, so we have HUMAN_WIN

< DRAW < COMPUTER_WIN.

1-25

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Minimax
• For the computer, the value of the position is the maximum of

all the values of the positions that can result from making a

move.

• Scenario

– Suppose that one move leads to a winning position, two

moves lead to a drawing position, and six moves lead to a

losing position.

– Then the starting position is a winning position because the

computer can force the win.

• Moreover, the move that leads to the winning position is the

move to make.

• For the human player we use the minimum instead of the

maximum.

1-26

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Minimax for Tic-Tac-Toe

1-27

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Minimax for Tic-Tac-Toe

1-28

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-29

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-30

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-31

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-32

Set value

Recursive call

with opponents’

turn

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Alpha-Beta Pruning

1-33

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Alpha-Beta Pruning

• Although the minimax strategy gives an optimal Tic-Tac-

Toe move, it performs a lot of searching.

• Specifically, to choose the first move, it makes roughly a

half-million recursive calls.

• One reason for this large number of calls is that the

algorithm does more searching than necessary.

1-34

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

TTT Scenario
• Suppose that the computer is considering five moves: C1, C2, C3, C4,

and C5. Suppose also that the recursive evaluation of C1 reveals that

C1 forces a draw.

• Now C2 is evaluated.

• At this stage, we have a position from which it would be the human

player's turn to move.

• Suppose that in response to C2, the human player can consider H2a,

H2b, H2c, and H2d, Further, suppose that an evaluation of H2a shows

a forced draw.

• Automatically, C2 is at best a draw and possibly even a loss for the

computer (because the human player is assumed to play optimally).

Because we need to improve on C1, we do not have to evaluate any of

H2b, H2c, and H2d.

• We say that H2a is a refutation, meaning that it proves that C2 is not a

better move than what has already been seen.

1-35

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Alpha-Beta Pruning

1-36

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Alpha-Beta Pruning

1-37

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-38

Cut-point

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Transposition tables

• Another commonly employed practice is to use a table to

keep track of all positions that have been evaluated.

• For instance, in the course of searching for the first move, the

program will examine the positions shown in Figure 10.12.

(next slide)

• If the values of the positions are saved, the second occurrence

of a position need not be recomputed; it essentially becomes

a terminal position.

• The data structure that records and stores previously

evaluated positions is called a transposition table;

– It is implemented as a map of positions to values.

1-39

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-40

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-41

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-42

Check the table

and get the value

of the board

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved
1-43

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Speedup with data structures

• The use of the transposition table in this Tic-Tac-

Toe algorithm removes about half the positions

from consideration, with only a slight cost for the

transposition table operations.

• The program's speed is almost doubled.

1-44

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

End of class

• Readings

– Minimax: chapter 7

– Today’s class: chapter 10

1-45

