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Fun and Games 
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Word search puzzle  

• The input to the word search puzzle problem is a two-

dimensional array of characters and a list of words, and the 

object is to find the words in the grid.  

 

• These words may be horizontal, vertical, or diagonal in any 

direction (for a total of eight directions).  
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Brute force algorithm 

For each word W in the word list  

for each row R  

 for each column C  

 for each direction D  

 check if W exists at row R, column C in 

 direction D.  
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Complexity 

• Because there are eight directions, this algorithm requires eight  

word/row/column (8WRC) checks.  

• Typical puzzles published in magazines feature 40 or so words 

and a 16 x 16 grid, which involves roughly 80,000 checks.  

• That  number is certainly easy to compute on any modern 

machine.  

• Suppose, however, that we consider the variation in which only 

the puzzle board is given and the word list is essentially an 

English dictionary.  

• In this case, the number of words might be 40,000 instead of 40, 

resulting in 80,000,000 checks.   

• Doubling the grid would require 320,000,000 checks, which is 

no longer a trivial calculation.  
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Alternative algorithm 
for each row R  

 for each column C  

  for each direction D  

   for each word length L  

   check if L chars starting at row R  

   column C in direction D form a word  
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This algorithm rearranges the loop to avoid searching for every 

word in the word list.  

If we assume that words are limited to 20 characters, the number 

of checks used by the algorithm is 160 RC. For a 32 x 32 puzzle, 

this number is roughly 160,000 checks.  

The problem, of course, is that we must now decide whether a 

word is in the word list.  
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Finding a word in a list 
• How to decide whether a word is in the word list?  

• If we use a linear search, we lose.  

• If we use a good data structure, we can expect an efficient 

search.  

• If the word list is sorted, which is to be expected for an online 

dictionary, we can use a binary search and perform each check 

in roughly logW string comparisons. 

– For 40,000 words, doing so involves perhaps 16  

comparisons per check  

• for a total of less than 3,000,000 string comparisons 

(16x160RC = 160x16x32x32=2.621.440).  

• This number of comparisons can certainly be done in a 

few seconds and is a factor of 100 better than the 

previous algorithm.   
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Improved algorithm 

• We can further improve the algorithm based on the 

following observation.  

• Suppose that we are searching in some direction and see 

the character sequence qx. An English dictionary will not 

contain any words beginning with qx.  

• So is it worth continuing the innermost loop (over all word 

lengths)?  

• The answer obviously is no: If we detect a character 

sequence that is not a prefix of any word in the dictionary, 

we can immediately look in another direction.  
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Improved algorithm 

for each row R  

   for each column C  

      for each direction D  

         for each word length L  

 check if L chars starting at row R column C in  

  direction D form a word  

 if they do not form a prefix,  

break; // the innermost  
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If not sorted, it does 

not add the word 
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Put in every row the 

array of characters 
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We give a direction by indicating a column direction and then a row direction. 

For instance, south is indicated by cd=0 and rd=l and northeast by cd=l and rd=-

l; cd can range from -1 to 1 and rd from -1 to 1, except that both cannot be 0 

simultaneously.  

8 directions 

 

cd rd 

1         0 

1 1 

1 -1 

0 1 

0 -1 

-1 0 

-1 1 

-1 -1 
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This specifies direction! 

No prefix found 

A prefix found but not a 

match 

Either not found, prefix, 

or match 

Match found 
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Tic-Tac-Toe 
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Tic-Tac-Toe 
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Minimax 

• Minimax (sometimes minmax) is a decision rule used in 

decision theory, game theory, statistics and philosophy for 

minimizing the possible loss for a worst case (maximum 

loss) scenario.  

• Alternatively, it can be thought of as maximizing the 

minimum gain (maximin).  

• Originally formulated for two-player zero-sum game 

theory, covering both the cases where players take 

alternate moves and those where they make simultaneous 

moves, it has also been extended to more complex games 

and to general decision making in the presence of 

uncertainty. 
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Minimax Theorem 

• In the theory of simultaneous games, a minimax strategy 

is a mixed strategy which is part of the solution to a 

zero-sum game.  

 

• In zero-sum games, the minimax solution is the same as 

the Nash equilibrium. 

 

• This theorem was established by John von Neumann 
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Minimax Theorem 

Minimax theorem 

• For every two-person, zero-sum game with finitely 

many strategies, there exists a value V and a mixed 

strategy for each player, such that 

– (a) Given player 2's strategy, the best payoff 

possible for player 1 is V, and  

– (b) Given player 1's strategy, the best payoff 

possible for player 2 is −V.  
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Minimax Theorem 

• Equivalently, Player 1's strategy guarantees him a payoff of V 

regardless of Player 2's strategy, and similarly Player 2 can 

guarantee himself a payoff of −V.  

 

• The name minimax arises because each player minimizes the 

maximum payoff possible for the other — since the game is 

zero-sum, he also maximizes his own minimum payoff. 

1-24 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Minimax strategy 

• The strategy used is the minimax strategy, which is based 

on the  assumption of optimal play by both players.  

• The value of a position is a COMPUTER_WIN if optimal 

play implies that the computer can force a win.  

• If the computer can force a draw but not a win, the value is 

DRAW; if the human player can force a win, the value is 

HUMAN_WIN.  

• We want the computer to win, so we have HUMAN_WIN 

< DRAW < COMPUTER_WIN.  
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Minimax 
• For the computer, the value of the position is the maximum of 

all the values of the positions that can result from making a 

move.  

• Scenario 

– Suppose that one move leads to a winning position, two 

moves lead to a drawing position, and six moves lead to a 

losing position.  

– Then the starting position is a winning position because the 

computer can force the win.  

• Moreover, the move that leads to the winning position is the 

move to make.  

• For the human player we use the minimum instead of the 

maximum.  

1-26 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Minimax for Tic-Tac-Toe 
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Minimax for Tic-Tac-Toe 
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Set value 

Recursive call 

with opponents’ 

turn 
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Alpha-Beta Pruning 
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Alpha-Beta Pruning 

• Although the minimax strategy gives an optimal Tic-Tac-

Toe move, it  performs a lot of searching.  

 

• Specifically, to choose the first move, it makes roughly a 

half-million recursive calls.  

 

• One reason for this large number of calls is that the 

algorithm does more searching than necessary.  

1-34 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

TTT Scenario 
• Suppose that the computer is considering five moves: C1, C2, C3, C4, 

and C5. Suppose also that the recursive evaluation of C1 reveals that 

C1 forces a draw.  

• Now C2 is evaluated.  

• At this stage, we have a position from which it would be the human 

player's turn to move.  

• Suppose that in response to C2, the human player can consider H2a, 

H2b, H2c, and H2d, Further, suppose that an evaluation of H2a shows 

a forced draw.  

• Automatically, C2 is at best a draw and possibly even a loss for the 

computer (because the human player is assumed to play  optimally). 

Because we need to improve on C1, we do not have to evaluate any of 

H2b, H2c, and H2d.  

• We say that H2a is a refutation, meaning that it proves that C2 is not a 

better move than what has already been seen.  
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Alpha-Beta Pruning 
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Alpha-Beta Pruning 
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Cut-point 



Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 

Transposition tables  

• Another commonly employed practice is to use a table to 

keep track of all positions that have been evaluated.  

• For instance, in the course of searching for the first move, the 

program will examine the positions shown in Figure 10.12. 

(next slide) 

• If the values of the positions are saved, the second occurrence 

of a position need not be recomputed; it essentially becomes 

a terminal position.  

• The data structure that records and stores previously 

evaluated positions is called a transposition table;  

– It is implemented as a map of positions to values.  
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Check the table 

and get the value 

of the board 
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Speedup with data structures 

• The use of the transposition table in this Tic-Tac-

Toe algorithm removes about half the positions 

from consideration, with only a slight cost for the 

transposition table operations.  

 

• The program's speed is almost doubled.  
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End of class 

• Readings 

– Minimax: chapter 7 

– Today’s class: chapter 10 
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