Data Structures
Lesson 12

BSc in Computer Science
University of New York, Tirana

Assoc. Prof. Marenglen Biba

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

1-1

Chapter 10

Fun and Games

Data Structures & Problem Solving Using

Java

Addison-Wesley -

is an imprint of

P/Eém Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Word search puzzle

e The input to the word search puzzle problem 1s a two-
dimensional array of characters and a list of words, and the
object 1s to find the words in the grid.

« These words may be horizontal, vertical, or diagonal in any
direction (for a total of eight directions).

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-3

Brute force algorithm

For each word W 1n the word list
for each row R
for each column C
for each direction D

check if W exists at row R, column C in
direction D.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

1-4

figure 10.1

A sample word
search grid

1-5

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Complexity

Because there are eight directions, this algorithm requires eight
word/row/column (8WRC) checks.

Typical puzzles published in magazines feature 40 or so words
and a 16 x 16 grid, which involves roughly 80,000 checks.

That number is certainly easy to compute on any modern
machine.

Suppose, however, that we consider the variation in which only
the puzzle board 1s given and the word list is essentially an
English dictionary.

In this case, the number of words might be 40,000 instead of 40,
resulting in 80,000,000 checks.

Doubling the grid would require 320,000,000 checks, which 1s
no longer a trivial calculation.

1-6

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Alternative algorithm

for each row R
for each column C
for each direction D
for each word length L

check if L chars starting at row R
column C in direction D form a word

This algorithm rearranges the loop to avoid searching for every
word in the word list.

If we assume that words are limited to 20 characters, the number
of checks used by the algorithm 1s 160 RC. For a 32 x 32 puzzle,
this number 1s roughly 160,000 checks.

The problem, of course, is that we must now decide whether a
word 1s 1n the word list.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved -7

Finding a word 1n a list

e How to decide whether a word is in the word list?
e [f we use a linear search, we lose.

« If we use a good data structure, we can expect an efficient
search.

» If the word list 1s sorted, which 1s to be expected for an online
dictionary, we can use a binary search and perform each check
in roughly logW string comparisons.

— For 40,000 words, doing so involves perhaps 16
comparisons per check

« for a total of less than 3,000,000 string comparisons
(16x160RC = 160x16x32x32=2.621.440).

e This number of comparisons can certainly be done in a
few seconds and is a factor of 100 better than the
previous algorithm.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

1-8

Improved algorithm

e We can further improve the algorithm based on the
following observation.

e Suppose that we are searching in some direction and see
the character sequence gx. An English dictionary will not
contain any words beginning with gx.

* So 1s 1t worth continuing the innermost loop (over all word
lengths)?

« The answer obviously 1s no: If we detect a character
sequence that is not a prefix of any word in the dictionary,
we can immediately look 1n another direction.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-9

Improved algorithm

for each row R
for each column C
for each direction D
for each word length L

check 1f L chars starting at row R column C in
direction D form a word

if they do not form a prefix,

break; // the innermost

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-10

figure 10.2 1 import java.io.BufferedReader;
The WordSearch class 2 import java.io.FileReader;
skeleton 3 import java.io.InputStreamReader;
4 import java.io.IOException;
5
6 import java.util.Arrays;
7 import java.util.Arraylist;
8 import java.util.Iterator;
9 import java.util.List;
10
11
12 // WordSearch class interface: solve word search puzzle
13 //
14 // CONSTRUCTION: with no initializer
15 // ﬁ*********'}**#**#*PUBLIC OPERATIONS'A'*****ﬁ'*'k*********
16 // int solvePuzzle() --> Print all words found in the
17 // puzzle; return number of matches
18
19 public class WordSearch
20 {
21 public WordSearch() throws IOException
22 { /* Figure 10.3 */ }
23 public int solvePuzzle()
24 { /* Figure 10.7 */ }
25
26 private int rows;
27 private int columns;
28 private char theBoard[][];
29 private String [] theWords;
30 private BufferedReader puzzleStream;
31 private BufferedReader wordStream;
32 private BufferedReader in = new
33 BufferedReader(new InputStreamReader(System.in));
34
35 private static int prefixSearch(String [] a, String x)
36 { /* Figure 10.8 */ }
37 private BufferedReader openFile(String message)
38 { /* Figure 10.4 */ }
39 private void readWords() throws IOException
40 { /* Figure 10.5 */ }
41 private void readPuzzle() throws IOException
42 { /* Figure 10.6 */ }
43 private int solveDirection(int baseRow, int baseCol,
44 int rowDelta, int colDelta)
45 { /* Figure 10.8 */ }
46 }

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 111

1 J¥¥ figure 10.3
2 * Constructor for WordSearch class. The WordSearch class
3 * Prompts for and reads puzzle and dictionary files. constructor
4 */

5 public WordSearch() throws IOException

6 {

7 puzzleStream = openFile("Enter puzzle file");

8 wordStream = openFile("Enter dictionary name");

9 System.out.printin("Reading files...");

10 readPuzzle();

11 readWords();

12 }

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-12

1 FAL figure 104

2 * Print a prompt and open a file. The openFiTe routine
3 * Retry until open is successful. for opening either the
4 * Program exits if end of file 1is hit. grid or word list file
5 ¥/

6 private BufferedReader openFile(String message)

7 {

8 String fileName = "";

9 FileReader theFile;

10 BufferedReader fileIn = null;

11

12 do

13 {

14 System.out.printin(message + ": ");

15

16 try

17 {

18 fileName = in.readlLine();

19 if(fileName == null)

20 System.exit(0);

21 theFile = new FileReader(fileName);

292 fileIn = new BufferedReader(theFile);

23

24 catch(IOException e)

25 { System.err.printin("Cannot open " + fileName); }

26 } while(fileln == null);

27

28 System.out.printin("Opened " + fileName);

29 return fileln;

30 }

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-13

1 /’**

2 * Routine to read the dictionary.

3 * Error message is printed if dictionary is not sorted.

4 */ .
5 private void readWords() throws IOException If not SOI‘ted, 1t dOCS
6 {

7 List<String> words = new ArraylList<String>(); not add the word
8

9 String lastWord = null;

10 String thisWord;

11

12 while((thisWord = wordStream.readlLine()) '= null)

13 {

14 if(lastWord !'= null & thisWord.compareTo(lastWord) < 0)

15 {

16 System.err.printin("Dictionary is not sorted... skipping"),

17 continue;

18 }

19 words.add(thisWord);

20 lastWord = thisWord;

21 }

22

23 theWords = new String[words.size()];

24 theWords = words.toArray(theWords);

25 }

figure 10.5

The readwWords routine for reading the word list

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-14

1 /**

2 * Routine to read the grid.

3 * Checks to ensure that the grid is rectangular.

4 * Checks to make sure that capacity is not exceeded is omitted.
5 */

6 private void readPuzzle() throws IOException

7 {

8 String oneline;

9 List<String> puzzlelines = new ArraylList<String>();

10

11 if((oneLine = puzzleStream.readLine()) == null)

12 throw new IOException("No Tines in puzzle file");
13

14 columns = onelLine.length();

15 puzzlelLines.add(oneLine);

16

17 while((onelLine = puzzleStream.readlLine()) != null)
18

19 if(onelLine.length() !'= columns)

20 System.err.printin("Puzzle is not rectangular; skipping row");
21 else

22 puzzlelLines.add(oneLine);

23 }

24

25 rows = puzzlelLines.size();

26 theBoard = new char[rows][columns];

27

28 int r=0;

29 for(String theline : puzzlelLines) / array Of haraCterS
30 theBoard[r++] = thelLine.toCharArray();

31 1

figure 10.6

The readPuzzle routine for reading the grid

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Put 1n every row the

1-15

figure 10.7 1 JE*
The solvePuzzle 2 * Routine to solve the word search puzzle,
routine for searching 3 * Performs checks in all eight directions.
in all directions from 4 * @return number of matches
all starting points 5 %/
6 public int solvePuzzle()
7 {
. . 8 int matches = 0;
8 directions o
10 for(int r=0; r < rows; r++)
cd rd 11 for(int ¢ = 0: ¢ < columns; c++)
12 for(int rd = -1; rd <= 1; rd++)
1 0 13 for(int cd = -1; cd <= 1; cd++)
1 1 14 ifCrd =0 || cd 1=0)
| 1 15 matches += solveDirection(r, ¢, rd, cd);
- 16
0 1 17 return matches:
0 -1 e}
-1
-1 1
-1 -1

We give a direction by indicating a column direction and then a row direction.
For instance, south 1s indicated by cd=0 and rd=I and northeast by cd=I and rd=-
I; cd can range from -1 to 1 and rd from -1 to 1, except that both cannot be 0
simultaneously.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-16

1 J** figure 10.8

2 * Search the grid from a starting point and direction. Implementation of a

3 * @return number of matches single search

4 #f

5 private int solveDirection(int baseRow, int baseCol,

6 int rowDelta, int colDelta)

7 {

8 String charSequence = "";

9 int numMatches = 0;

10 int searchResult;

11

12 charSequence += theBoard[baseRow][baseCol];

13

14 for(int i = baseRow + rowDelta, j = baseCol + colDelta;

15 i5>=08 j>=08&% i < rows & j < columns;

. (ol s colbelia) < This specifies direction!
18 charSequence += theBoard[i][j 1;

19 searchResult = prefixSearch(theWords, charSequence);

20

21 if(searchResult == theWords.length) €—

2 break; No prefix found
23 if(!theWords[searchResult].startsWith(charSequence))

24 break;

25

26 if(theWords[searchResult].equals(charSequence)) \ A preﬁx found but not a
27 {

28 numMatches++; \ matCh
29 System.out.printin("Found " + charSequence + " at " +

30 baseRow + " " + baseCol + " to " +

31 i+ """+ i)

.) Match found
33 1

34

35 return numMatches;

36 }

37

38 i

39 * Performs the binary search for word search.

40 * Returns the Tlast position examined this position

44 * either matches x, or x is a prefix of the mismatch, or there is

42 * no word for which x is a prefix. &_\

43 '.‘:/ .

44 private static int prefixSearch(String [] a, String x) Elther nOt founda preﬁxa
45 {

46 int idx = Arrays.binarySearch(a, x); or matCh
47

48 if(idx < 0)

49 return -idx - 1;

50 else

51 return idx;

52 }

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-17

figure 10.9 1 // Cheap main
A simple main routine 2 public static void main(String [] args)
for the word search 3 {
puzzle problem 4 WordSearch p = null;
5
6 try
7 {
8 p = new WordSearch();
9 }
10 catch(IOException e)
1 {
12 System.out.printin("IO Error: ");
13 e.printStackTrace();
14 return;
15 }
16
17 System.out.printin("Solving...");
18 p.solvePuzzle();

1-18

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Tic-Tac-Toe

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-19

Tic-Tac-Toe

figure 10.12
X X0 X110 X
Two searches that
—- — arrive at identical
positions
X O X X10O| X
— .

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-20

Minimax

e Minimax (sometimes minmax) is a decision rule used in
decision theory, game theory, statistics and philosophy for
minimizing the possible loss for a worst case (maximum
loss) scenario.

« Alternatively, it can be thought of as maximizing the
minimum gain (maximin).

* Originally formulated for two-player zero-sum game
theory, covering both the cases where players take
alternate moves and those where they make simultaneous
moves, 1t has also been extended to more complex games
and to general decision making in the presence of
uncertainty.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-21

Minimax Theorem

 In the theory of simultaneous games, a minimax strategy
1s a mixed strategy which 1s part of the solution to a
Zero-sum game.

* In zero-sum games, the minimax solution is the same as
the Nash equilibrium.

e This theorem was established by John von Neumann

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-22

Minimax Theorem

Minimax theorem

* For every two-person, zero-sum game with finitely
many strategies, there exists a value V and a mixed
strategy for each player, such that

— (a) Given player 2's strategy, the best payoff
possible for player 1 1s V, and

— (b) Given player 1's strategy, the best payoff
possible for player 2 1s —V.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-23

Minimax Theorem

« Equivalently, Player 1's strategy guarantees him a payoff of V
regardless of Player 2's strategy, and similarly Player 2 can
guarantee himself a payoff of —V.

* The name minimax arises because each player minimizes the
maximum payoff possible for the other — since the game is
zero-sum, he also maximizes his own minimum payoff.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-24

Minimax strategy

* The strategy used is the minimax strategy, which 1s based
on the assumption of optimal play by both players.

e The value of a position 1s a COMPUTER WIN if optimal
play implies that the computer can force a win.

 If the computer can force a draw but not a win, the value 1s
DRAW; if the human player can force a win, the value 1s
HUMAN_ WIN.

 We want the computer to win, so we have HUMAN WIN
<DRAW < COMPUTER_WIN.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-25

Minimax

* For the computer, the value of the position 1s the maximum of
all the values of the positions that can result from making a
move.

 Scenario

— Suppose that one move leads to a winning position, two
moves lead to a drawing position, and six moves lead to a
losing position.

— Then the starting position 1s a winning position because the
computer can force the win.

* Moreover, the move that leads to the winning position is the
move to make.

* For the human player we use the minimum instead of the
maximum.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-26

for Tic-Tac-Toe

Inimax

M

Choose @ Choose | Choose
MAXIMUM minimum MAXIMUM
: ~ [OXO)E [OXo)
- |OXIX[*=—OXX
Xl 10 | XXKIO
ool ey
oXolS— B
SR Ko _xmx
X L) [0 o OX0|®
——s |OXX OXIX
mxm_JﬂEXOX XIOX
X X~Jfcce)
- JOXX]|
o 0 X X
OXX|_
XX

0 H1434

T HL434

1-27

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

Minimax for Tic-Tac-Toe

MAX(X)
X
MIN(O)
X X
X
X
MIN(O) X 0Xx
X|0|X X|0|X X X
Terminal 0 00|x| [O]X
0 o(X|[0 X|lo|o
Utility -1 0 +1

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-28

figure 7.26 1 final class Best
Class to store an 2 { .
evaluated move 3 nt row;
4 int column;
5 int val;
6
7 public Best(int v)
8 { thisCv, 0, 0); }
9
10 public Best(int v, int r, int c)
11 {val =v; row = r; column = c; }

1-29

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

1 class TicTacToe figure 7.27
2 { . . i . Skeleton for class
3 public static final int HUMAN = 0; TicTacToe
4 public static final int COMPUTER =1

5 public static final int EMPTY =2;

6

7 public static final int HUMAN_WIN =0;

8 public static final int DRAW =1;

9 public static final int UNCLEAR = 2;

10 public static final int COMPUTER_WIN = 3;

11

12 // Constructor

13 public TicTacToe()

14 { clearBoard(); }

15

16 // Find optimal move

17 public Best chooseMove(int side)

18 { /* Implementation in Figure 7.29 */ }

19

20 // Compute static value of current position (win, draw, etc.)
21 private int positionValue()

22 { /* Implementation in Figure 7.28 */ }

23

24 // Play move, including checking legality

25 public boolean playMove(int side, int row, int column)
26 { /* Implementation in online code */ }

27

28 // Make board empty

29 public void clearBoard()

30 { /* Implementation in online code */ }

31

32 // Return true if board is full

33 public boolean boardIsFull()

34 { /* Implementation in online code */ }

35

36 // Return true if board shows a win

37 public boolean isAWin(int side)

38 { /* Implementation in online code */ }

39
40 // Play a move, possibly clearing a square
41 private void place(int row, int column, int piece)

42 { board[row][column] = piece; }

43

44 // Test if a square is empty

45 private boolean squarelsEmpty(int row, int column)

46 { return board[row][column] == EMPTY; }

47

48 private int [] [] board = new int[3][3];

49 }

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-30

figure 7.28 1 // Compute static value of current position (win, draw, etc.)
Supporting routine for 2 private int positionValue()
evaluating positions 3 {

4 return isAWin(COMPUTER) ? COMPUTER_WIN :

5 isAWin(HUMAN) ? HUMAN_WIN :

6 boardIsFull() ? DRAW : UNCLEAR;

7 }

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-31

1 // Find optimal move figure 7.29

2 public Best chooseMove(int side) A recursive routine for

3 { finding an optimal Tic-

4 int opp; // The other side Tac-Toe move

5 Best reply; // Opponent’s best reply

6 int dc; // Placeholder

7 int simplekval; // Result of an immediate evaluation

8 int bestRow = 0;

9 int bestColumn = 0;

10 int value;

11

12 if((simpleEval = positionValue()) != UNCLEAR)

13 return new Best(simpleEval);

14

15 if(side == COMPUTER)

16

17 opp = HUMAN; value = HUMAN_WIN;

18

19 else

20

21 opp = COMPUTER; value = COMPUTER_WIN; Set Value
22

23

24 for(int row = 0; row < 3; row++)

25 for(int column = 0; column < 3; column++)

26 if(squarelsEmpty(row, column))

27 {

28 place(row, column, side);

29 reply = chooseMove(opp);

30 place(row, column, EMPTY); .
1 o - Recursive call
32 // Update if side gets better position

33 if(side == COMPUTER && reply.val > value . 9
34 || side == HUMAN && reply.val < value) Wlth Opponents
35 {

36 value = reply.val;

37 bestRow = row; bestColumn = column; turn

38 1

39 }

40

41 return new Best(value, bestRow, bestColumn);

42 1

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-32

Alpha-Beta Pruning

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-33

Alpha-Beta Pruning

« Although the minimax strategy gives an optimal Tic-Tac-
Toe move, 1t performs a lot of searching.

» Specifically, to choose the first move, it makes roughly a
half-million recursive calls.

e One reason for this large number of calls 1s that the
algorithm does more searching than necessary.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-34

TTT Scenario

* Suppose that the computer 1s considering five moves: C1, C2, C3, C4,
and C5. Suppose also that the recursive evaluation of C1 reveals that
C1 forces a draw.

e Now C2 1s evaluated.

« At this stage, we have a position from which it would be the human
player's turn to move.

« Suppose that in response to C2, the human player can consider H2a,
H2b, H2c, and H2d, Further, suppose that an evaluation of H2a shows
a forced draw.

« Automatically, C2 1s at best a draw and possibly even a loss for the
computer (because the human player 1s assumed to play optimally).
Because we need to improve on C1, we do not have to evaluate any of
H2b, H2c, and H2d.

* We say that H2a 1s a refutation, meaning that it proves that C2 is not a
better move than what has already been seen.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-35

Alpha-Beta Pruning

figure 10.10

Alpha—beta pruning:
After H, , is evaluated,
C,, which is the
minimum of the Hj's,
is at best a draw.
Consequently, it
cannot be an
improvement over C,.
We therefore do not

need to evaluate H,y,
H,,., and H,, and can
Praﬁ:eed directly to C;. Cr . Cz . Cs . Use best result
. . . . Use worst result
Haq Hap Hae Haq

DRAW DRAW ? ? ?

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-36

Alpha-Beta Pruning

MAX

MIN

3 12 8 2 14 5 2

@ Ajq gives worse choice than A1, so prune at A, since we know that

Az will always be worse than A;

@ All A3’s children expanded, since it is the last child that gives value of
2.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-37

1 // Find optimal move
2 private Best chooseMove(int side, int alpha, int beta, int depth)
3 {
4 int opp; // The other side
5 Best reply; // Opponent's best reply
6 int dc; // Placeholder
7 int simpleEval; // Result of an immediate evaluation
8 int bestRow = 0;
9 int bestColumn = 0;
10 int value;
11
12 if((simpleEval = positionValue()) != UNCLEAR)
13 return new Best(simpleEval);
14
15 if(side == COMPUTER)
16 {
17 opp = HUMAN; value = alpha;
18 }
19 else
20 {
21 opp = COMPUTER; value = beta;
22 }
23
24 Quter:
25 for(int row = 0; row < 3; row++)
26 for(int column = 0; column < 3; column++)
27 if(squarelsEmpty(row, column))
28
29 place(row, column, side);
30 reply = chooseMove(opp, alpha, beta, depth + 1);
3 place(row, column, EMPTY);
32
33 if(side == COMPUTER && reply.val > value ||
34 side == HUMAN && reply.val < value)
35 {
36 if(side == COMPUTER)
37 alpha = value = reply.val;
38 else
39 beta = value = reply.val; .
40
41 bestRow = row; bestColumn = column; Cut_pOIIlt
42 if(alpha >= beta) <&__,__———""'————————
43 break Outer; // Refutation
a4 }
45 1
46
47 return new Best(value, bestRow, bestColumn);
48 }
figure 10.11

The chooseMove routine for computing an optimal Tic-Tac-Toe move, using alpha—beta pruning

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-38

Transposition tables

* Another commonly employed practice 1s to use a table to
keep track of all positions that have been evaluated.

« For instance, in the course of searching for the first move, the
program will examine the positions shown in Figure 10.12.
(next slide)

» If the values of the positions are saved, the second occurrence
of a position need not be recomputed; 1t essentially becomes
a terminal position.

« The data structure that records and stores previously
evaluated positions 1s called a transposition table;

— It is implemented as a map of positions to values.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-39

1 final class Position

2 {

3 private int [1[] board;

4

5 public Position(int [][] theBoard)

6 {

7 board = new int[3][3 1;

8 for(int i =0; i < 3; i++)

9 for(int j =0; j < 3; j++)
10 board[i J[j] = theBoard[i J[j 1;
11 }

12

13 public boolean equals(Object rhs)

14

15 if(! (rhs instanceof Position))
16 return false;

17

18 Position other = (Position) rhs;
19

20 for(int i =0; 1 < 3; i++)

21 for(int j = 0; j < 3; j++)
22 if(board[i][j 1 != ((Position) rhs).board[i 1[j 1)
23 return false;

24 return true;

25 }

26

27 public int hashCode()

28 {

29 int hashVal = 0;

30

31 for(int 1 =0; 1 < 3; i++)

32 for(int j =0; j < 3; j++)
33 hashVal = hashVal * 4 + board[1][j 1;
34

35 return hashVal;

figure 10.13

The Position class

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-40

1 // Original import directives plus:
2 import java.util.Map;
3 import java.util.HashMap;

4
5 class TicTacToe

6 {

7 private Map<Position,Integer> transpositions

8 = new HashMap<Position,Integer>();
9

10 public Best chooseMove(int side)

11 { return chooseMove(side, HUMAN WIN, COMPUTER_WIN, 0); }

12

13 J/ Find optimal move

14 private Best chooseMove(int side, int alpha, int beta, int depth)
15 { /* Figures 10.15 and 10.16 */ }

figure 10.14

Changes to the TicTacToe class to incorporate transposition table and alpha—beta pruning

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-41

1 // Find optimal move

2 private Best chooseMove(int side, int alpha, int beta, int depth)
3 {

4 int opp; // The other side

5 Best reply; // Opponent's best reply

6 int dc; // Placeholder

7 int simpleEval; // Result of an immediate evaluation

8 Position thisPosition = new Position(board);

9 int tableDepth = 5; // Max depth placed in Trans. table

10 int bestRow = 0;

11 int bestColumn = 0;

12 int value;

13

14 if((simpleEval = positionValue()) != UNCLEAR)

15 return new Best(simpleEval);

16

17 if(depth == 0)

18 transpositions.clear();

19 else if(depth >= 3 &% depth <= tableDepth)

20

21 Integer lookupVal = transpositions.get(thisPosition);

22 if(lookupval != null)

23 return new Best(TookupVal); Check the table
24 }

o5 and get the value
26 if(side == COMPUTER) of the board
27 {

28 opp = HUMAN; value = alpha;

29 }

30 else

31 {

32 opp = COMPUTER; value = beta;

33 }

figure 10.15
The Tic-Tac-Toe algorithm with alpha—beta pruning and transposition table (part 1)

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-42

34
35
36
37
38
39
40
a1
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

Quter:
for(int row = 0; row < 3; row++)
for(int column = 0; column < 3; column++)
if(squarelsEmpty(row, column))

{
place(row, column, side);
reply = chooseMove(opp, alpha, beta, depth + 1);
place(row, column, EMPTY);
if(side == COMPUTER && reply.val > value ||
side == HUMAN && reply.val < value)
{
if(side == COMPUTER)
alpha = value = reply.val;
else
beta = value = reply.val;
bestRow = row; bestColumn = column;
if(alpha >= beta)
break Outer; // Refutation
}
}

1f(depth <= tableDepth)
transpositions.put(thisPosition, value);

return new Best(value, bestRow, bestColumn);

figure 10.16
The Tic-Tac-Toe algorithm with alpha—beta pruning and transposition table (part 2)

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved

1-43

Speedup with data structures

* The use of the transposition table 1n this Tic-Tac-
Toe algorithm removes about half the positions
from consideration, with only a slight cost for the
transposition table operations.

* The program's speed 1s almost doubled.

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-44

End of class

» Readings
— Minimax: chapter 7

— Today’s class: chapter 10

Copyright © 2010 Pearson Education, publishing as Addison-Wesley. All rights reserved 1-45

