
Copyright © 2012 Pearson Education, Inc. 1-1

Introduction to Computer Science

Lesson 6

BSc in Computer Science

University of New York, Tirana

Assoc. Prof. Marenglen Biba

Copyright © 2012 Pearson Education, Inc. 3-2

Operating Systems

• Today

– The History of Operating Systems

– Operating System Architecture

– Coordinating the Machine’s Activities

• Next lesson

– Handling Competition Among Processes

– Security

Copyright © 2012 Pearson Education, Inc. 3-3

What is an Operating System?

• An operating system is the software that controls

the overall operation of a computer.

• It provides the means by which a user can store

and retrieve files, provides the interface by which

a user can request the execution of programs,

and provides the environment necessary to

execute the programs requested.

Copyright © 2012 Pearson Education, Inc. 3-4

What is an Operating System?

• A program that acts as an intermediary between

a user of a computer and the computer

hardware.

• Operating system goals:

– Execute user programs and make solving user

problems easier.

– Make the computer system convenient to use.

• Use the computer hardware in an efficient

manner.

Copyright © 2012 Pearson Education, Inc. 3-5

Functions of Operating Systems

• Oversee operation of computer

• Store and retrieve files

• Schedule programs for execution

• Coordinate the execution of programs

Copyright © 2012 Pearson Education, Inc. 3-6

Where is an OS positioned?

Copyright © 2012 Pearson Education, Inc. 3-7

Example of Operating Systems

• Perhaps the best known example of an operating system

is Windows, which is provided in numerous versions by

Microsoft and widely used in the PC arena.

• Another well-established example is UNIX, which is a

popular choice for larger computer systems as well as

PCs.

• In fact, UNIX is the core of Mac OS, which is the operating

system provided by Apple for its range of Mac machines.

• Still another example found on both large and small

machines is Linux, which was originally developed non

commercially by computer enthusiasts and is now

available through many commercial sources, including

IBM.

Copyright © 2012 Pearson Education, Inc. 3-8

History of Operating Systems: machines

• First generation 1945 - 1955

– vacuum tubes, plug boards

• Second generation 1955 - 1965

– transistors, batch systems

• Third generation 1965 – 1980

– ICs and multiprogramming

• Fourth generation 1980 – present

– personal computers

Copyright © 2012 Pearson Education, Inc. 3-9

First generation 1945 - 1955

• The computers of the 1940s and 1950s were not very flexible or

efficient. Machines occupied entire rooms.

• Program execution required significant preparation of equipment

in terms of mounting magnetic tapes, placing punched cards in

card readers, setting switches, and so on.

• The execution of each program, called a job, was handled as an

isolated activity- the machine was prepared for executing the

program, the program was executed, and then all the tapes,

punched cards, etc. had to be retrieved before the next program

preparation could begin.

• When several users needed to share a machine, sign-up sheets

were provided so that users could reserve the machine for blocks

of time.

• During the time period allocated to a user, the machine was

totally under that user's control – no one else could work.

Copyright © 2012 Pearson Education, Inc. 3-10

History of Operating Systems

Early batch system
– bring cards to 1401
– read cards to tape
– put tape on 7094 which does computing
– put tape on 1401 which prints output

Copyright © 2012 Pearson Education, Inc. 3-11

Batch Processing

• One early development was the separation of users and equipment,

which eliminated the physical transition of people in and out of the

computer room.

• For this purpose a computer operator was hired to operate the

machine. Anyone wanting a program run was required to submit it,

along with any required data and special directions about the

program's requirements, to the operator and return later for the

results.

• The operator, in turn, loaded these materials into the machine's mass

storage where a program called the operating system could read and

execute them one at a time.

• This was the beginning of batch processing - the execution of jobs by

collecting them in a single batch, then executing them without further

interaction with the user.

Copyright © 2012 Pearson Education, Inc. 3-12

Figure 3.1 Batch processing

• In batch processing systems, the jobs residing in
mass storage wait for execution in a job queue.

• A queue is a storage organization in which objects
(in this case, jobs) are ordered in first-in, first-out
(abbreviated FIFO) fashion.

Copyright © 2012 Pearson Education, Inc. 3-13

1965-1980 - Multiprogramming

• Multiprogramming system

– three jobs in memory

Copyright © 2012 Pearson Education, Inc. 3-14

MS-DOS execution:

single-tasking system

(a) At system startup (b) running a program

Does not

create a new

process for

every

program

running but

loads the

program

overwriting

most of

memory

Copyright © 2012 Pearson Education, Inc. 3-15

FreeBSD Running Multiple Programs:

multi-tasting system

Once the program starts, it

can run in background and

another program can be

started again.

Copyright © 2012 Pearson Education, Inc. 3-16

1980 – present

• Apple Macintosh

– GUI: Graphical User Interface

• Microsoft Windows: 90s

– Initially run over DOS

– Not really a different OS

• Windows 95

– Underlying DOS: only for booting and running old DOS
programs.

– Windows 98

– Both W95 and Win98 retain large portions of 16-bit assembly
language.

• Windows NT (New Technology)

– Full 32-bit system

– Would kill off DOS: Win NT 4.0

– Win NT 4.0 was renamed to Windows 2000.

Copyright © 2012 Pearson Education, Inc. 3-17

Fourth generation 1980 – present

• UNIX

– Best for workstations, high-end computers, network

servers

– Popular on machines with high-performance RISC

chips

– Linux is also going strong on Pentium machines

• X Windows

– Graphical User Interface for UNIX developed at M.I.T.

• Distributed Operating Systems

• Network Operating Systems

Copyright © 2012 Pearson Education, Inc. 3-18

Windows

• Microsoft Windows is a series of software operating

systems and graphical user interfaces produced by

Microsoft.

• Microsoft first introduced an operating environment named

Windows in November 1985 as an add-on to MS-DOS in

response to the growing interest in graphical user interfaces

(GUIs).

• Microsoft Windows came to dominate the world's personal

computer market, overtaking Mac OS, which had been

introduced previously.

• The most recent client version of Windows is Windows 7;

the most recent server version is Windows Server 2008 R2.

Copyright © 2012 Pearson Education, Inc. 3-19

In the 90s: Windows 3.1

Windows 3.1 required a minimum of MS-DOS 3.1, a 386

processor with 2MB of RAM, and 6MB of hard disk space.

Copyright © 2012 Pearson Education, Inc.

Market share: desktop OS

0-20

Copyright © 2012 Pearson Education, Inc.

Market share: mobile OS

0-21

Copyright © 2012 Pearson Education, Inc. 3-22

Linux
• For the computer enthusiast who wants to experiment with the internal

components of an operating system, there is Linux.

• Linux is an operating system originally designed by Linus Torvalds

while a student at the University of Helsinki.

• It is a nonproprietary product and available, along with its source code

and documentation, without charge.

• Because it is freely available in source code form, it has become

popular among computer hobbyists, students of operating systems,

and programmers in general.

• Moreover, Linux is recognized as one of the most reliable operating

systems available today. For this reason, several companies now

package and market versions of Linux in an easily useable form, and

these products are now challenging the long-established commercial

operating systems on the market.

• You can learn more about Linux from the website at

– http://www.linux.org.

Copyright © 2012 Pearson Education, Inc. 3-23

UNIX

• Unix (officially trademarked as UNIX, sometimes also written as Unix

with small caps) is a computer operating system originally developed

in 1969 by a group of AT&T employees at Bell Labs, including Ken

Thompson, Dennis Ritchie, Brian Kernighan, Douglas McIlroy, and

Joe Ossanna.

• The Unix operating system was first developed in assembly

language, but by 1973 had been almost entirely recoded in C, greatly

facilitating its further development and porting to other hardware.

• As of 2007, the owner of the trademark is The Open Group, an

industry standards consortium.

• Only systems fully compliant with and certified according to the

Single UNIX Specification are qualified to use the trademark; others

are called "Unix system-like" or "Unix-like".

Copyright © 2012 Pearson Education, Inc. 3-24

Evolution of Shared Computing

• Batch processing

• Interactive processing

– Requires real-time processing

• Time-sharing/Multitasking

– Implemented by Multiprogramming

• Multiprocessor machines

Copyright © 2012 Pearson Education, Inc. 3-25

Drawbacks of batch processing

• A major drawback to using a computer operator as an intermediary

between a computer and its users is that the users have no

interaction with their jobs once they are submitted to the operator.

• This approach is acceptable for some applications, such as payroll

processing, in which the data and all processing decisions are

established in advance.

• However, it is not acceptable when the user must interact with a

program during its execution.

• Examples include:

– reservation systems in which reservations and cancellations must

be reported as they occur;

– word processing systems in which documents are developed in a

dynamic write and rewrite manner;

– computer games in which interaction with the machine is the

central feature of the game.

Copyright © 2012 Pearson Education, Inc. 3-26

Figure 3.2 Interactive processing

Copyright © 2012 Pearson Education, Inc. 3-27

Real-time processing

• Paramount to successful interactive processing is that the

actions of the computer be sufficiently fast to coordinate

with the needs of the user rather than forcing the user to

conform to the machine's timetable.

• Providing computer services in such a timely manner

became known as real-time processing, and the actions

performed were said to occur in real-time.

– That is, to say that a computer performs a task in real

time means that the computer performs the task

quickly enough that it is able to keep up with activities

in its external (real-world) environment.

Copyright © 2012 Pearson Education, Inc. 3-28

Real-time processing

• If interactive systems had been required to serve only

one user at a time, real-time processing would have been

no problem.

• But computers in the 1960s and 1970s were expensive,

so each machine had to serve more than one user.

• In turn, it was common for several users, working at

remote terminals, to seek interactive service from a

machine at the same time, and real-time considerations

presented obstacles.

• If the operating system insisted on executing only one job

at a time, only one user would receive satisfactory real-

time service.

Copyright © 2012 Pearson Education, Inc. 3-29

Time-sharing

• A solution to real-time services was to design the operating system so

that it rotated the various jobs in and out of execution by a strategy

called time-sharing:

– which is the technique of dividing time into intervals and then

restricting the execution of a job to only one interval at a time.

• At the end of each interval, the current job is temporarily set aside

and another is allowed to execute during the next interval.

• By rapidly shuffling the jobs back and forth in this manner, the illusion

of several jobs executing simultaneously is created.

• Depending on the types of jobs being executed, early time-sharing

systems were able to provide acceptable real-time processing to as

many as 30 users simultaneously.

• Today, time-sharing is used in single-user as well as multiuser

systems, although in the former it is usually called multitasking, in

reference to the illusion of more than one task being performed

simultaneously.

Copyright © 2012 Pearson Education, Inc. 3-30

Time-sharing

Copyright © 2012 Pearson Education, Inc. 3-31

Workstations

• With the development of multiuser, time-sharing operating

systems, a typical computer installation was configured as a

large central computer connected to numerous workstations.

• From these workstations, users could communicate directly

with the computer from outside the computer room rather than

submitting requests to a computer operator.

• Commonly used programs were stored in the machine's mass

storage devices and operating systems were designed to

execute these programs as requested from the workstations.

• In turn, the role of a computer operator as an intermediary

between the users and the computer began to fade.

Copyright © 2012 Pearson Education, Inc. 3-32

System Administrator

• Today, the existence of a computer operator has essentially

disappeared, especially in the arena of personal computers where the

computer user assumes all of the responsibilities of computer

operation.

• Even most large computer installations run essentially unattended.

• Indeed, the job of computer operator has given way to that of a system

administrator who manages the computer system. His duties are:

– obtaining and overseeing the installation of new equipment and

software,

– enforcing local regulations such as the issuing of new accounts

– establishing mass storage space limits for the various users

– coordinating efforts to resolve problems that arise in the system

- Rather than operating the machines in a hands-on manner.

Copyright © 2012 Pearson Education, Inc. 3-33

Load Balancing

• The evolution of operating systems continues.

• The development of multi-processor machines has led to

operating systems that perform multitasking by assigning

different tasks to different processors rather than by

sharing the time of a single processor.

• These operating systems must wrestle with such problems

as load balancing

– dynamically allocating tasks to the various processors

so that all processors are used efficiently

• as well as scaling

– breaking tasks into a number of subtasks compatible

with the number of processors available.

Copyright © 2012 Pearson Education, Inc. 3-34

Distributed systems

• Moreover, the advent of computer networks in which

numerous machines are connected over great distances has

led to the necessity for software systems to coordinate the

network's activities.

• Thus the field of networking is in many ways an extension of

the subject of operating systems - the goal being to develop a

single network-wide operating system rather than a network of

individual operating systems.

Copyright © 2012 Pearson Education, Inc.

Embedded systems

• Still another direction of research in operating systems focuses on

devices that are dedicated to specific tasks such as medical devices,

vehicle electronics, home appliances, cell phones, or other hand-held

computers.

• The computer systems found in these devices are known as embedded

systems.

• Embedded operating systems are often expected to conserve battery

power, meet demanding real-time deadlines, or operate continuously

with little or no human oversight.

• Successes in this endeavor are marked by systems such as:

– VxWORKS, developed by Wind River Systems and used in the Mars

Exploration Rovers named Spirit and Opportunity

– Windows CE (also known as Pocket PC) developed by Microsoft

– Palm OS developed by PalmSource, Inc., especially for use in hand-

held devices.

0-35

Copyright © 2012 Pearson Education, Inc.

What’s in a Smartphone?

• As cell phones have become more powerful, it has become possible

for them to offer services well beyond simply processing voice calls.

• A typical smartphone can now be used to text message, browse the

Web, provide directions, view multimedia content — in short, it can

be used to provide many of the same services as a traditional PC.

• As such, smartphones require full-fledged operating systems, not

only to manage the limited resources of the smartphone hardware,

but also to provide features that support the rapidly expanding

collection of smartphone application software.

• The battle for dominance in the smartphone operating system market

place promises to be fierce and will likely be settled on the basis of

which system can provide the most imaginative features at the best

price.

• Competitors in the smartphone operating system arena include

Apple’s iPhone OS, BlackBerry OS, Microsoft’s Windows Phone and

Google’s Android.

0-36

Copyright © 2012 Pearson Education, Inc. 3-37

Chapter 3: Operating Systems

• The History of Operating Systems

• Operating System Architecture

• Coordinating the Machine’s Activities

• Handling Competition Among Processes

• Security

Copyright © 2012 Pearson Education, Inc. 3-38

Types of Software

• Application software

• System software

Copyright © 2012 Pearson Education, Inc. 3-39

Application software

• Application software consists of the programs for
performing tasks particular to the machine's utilization.

• A machine used to maintain the inventory for a
manufacturing company will contain different application
software from that found on a machine used by an
electrical engineer.

• Examples of application software include spreadsheets,
database systems, desktop publishing systems,
accounting systems, program development software, and
games.

Copyright © 2012 Pearson Education, Inc. 3-40

System Software

• In contrast to application software, system software
performs those tasks that are common to computer
systems in general.

• In a sense, the system software provides the
infrastructure that the application software requires, in
much the same manner as a nation's infrastructure
(government, roads, utilities, financial institutions, etc.)
provides the foundation on which its citizens rely for their
individual lifestyles.

Copyright © 2012 Pearson Education, Inc. 3-41

System Programs

• System programs provide a convenient environment for

program development and execution. These can be divided

into:

– File manipulation

– Status information

– File modification

– Programming language support

– Program loading and execution

– Communications

– Application programs

• Most users’ view of the operation system is defined by

system programs

Copyright © 2012 Pearson Education, Inc. 3-42

System Programs

• File management - Create, delete, copy, rename, print,

dump, list, and generally manipulate files and directories

• Status information

– Some ask the system for info - date, time, amount of

available memory, disk space, number of users

– Others provide detailed performance, logging, and

debugging information

– Typically, these programs format and print the output to

the terminal or other output devices

– Some systems implement a registry - used to store and

retrieve configuration information

Copyright © 2012 Pearson Education, Inc. 3-43

System Programs (cont’d)

• File modification

– Text editors to create and modify files

– Special commands to search contents of files or perform

transformations of the text

• Programming-language support - Compilers, assemblers,

debuggers and interpreters sometimes provided

• Program loading and execution- Absolute loaders, relocatable

loaders, linkage editors, and overlay-loaders, debugging

systems for higher-level and machine language

• Communications - Provide the mechanism for creating virtual

connections among processes, users, and computer systems

– Allow users to send messages to one another’s screens,

browse web pages, send electronic-mail messages, log in

remotely, transfer files from one machine to another

Copyright © 2012 Pearson Education, Inc. 3-44

Utility software

• Within the class of system software are two categories: one is the

operating system itself and the other consists of software units

collectively known as utility software.

• The majority of an installation's utility software consists of programs for

performing activities that are fundamental to computer installations but

not included in the operating system.

• In a sense, utility software consists of software units that extend (or

perhaps customize) the capabilities of the operating system.

• For example, the ability to format a magnetic disk or to copy a file from

a magnetic disk to a CD is often not implemented within the operating

system itself but instead is provided by means of a utility program.

• Other instances of utility software include software to compress and

decompress data, software for playing multimedia presentations, and

software for handling network communication.

Copyright © 2012 Pearson Education, Inc. 3-45

Figure 3.3 Software classification

Copyright © 2012 Pearson Education, Inc. 3-46

Utility software and competition

• Implementing certain activities as utility software, allows system

software to be customized to the needs of a particular installation more

easily than if they were included in the operating system.

• Unfortunately, the distinction between application software and utility

software can be vague. From our point of view, the difference is

whether the package is part of the computer's software infrastructure.

• Thus a new application may evolve to the status of a utility if it becomes

a fundamental tool. When still a research project, software for

communicating over the Internet was considered application software;

today such tools are fundamental to most PC usage and would

therefore be classified as utility software.

• The distinction between utility software and the operating system is

equally vague. In particular, anti-trust lawsuits in the United States and

Europe have been founded on questions regarding whether units such

as browsers and media players are components of Microsoft's

operating systems or utilities that Microsoft has included merely to

squash competition.

Copyright © 2012 Pearson Education, Inc. 3-47

Operating System Components

• Shell: Communicates with users

– Text based

– Graphical user interface (GUI)

• Kernel: Performs basic required functions

– File manager

– Device drivers

– Memory manager

– Scheduler and dispatcher

Copyright © 2012 Pearson Education, Inc. 3-48

The Shell

• Although an operating system's shell plays an important role in

establishing a machine's functionality, this shell is merely an

interface between a user and the real heart of the operating

system.

• This distinction between the shell and the internal parts of the

operating system is emphasized by the fact that some operating

systems allow a user to select among different shells to obtain the

most compatible interface for that particular user.

• Users of the UNIX operating system, for example, can select

among a variety of shells including the Bourne shell, the C shell,

and the Korn shell.

• Moreover, early versions of Microsoft Windows were constructed

by essentially replacing the text-based shell that was currently

used with the operating system called MS-DOS with a GUI shell-

the underlying operating system remained MS-DOS.

Copyright © 2012 Pearson Education, Inc. 3-49

Figure 3.4 The shell as an interface

between users and the operating

system

Copyright © 2012 Pearson Education, Inc. 3-50

Shells

Copyright © 2012 Pearson Education, Inc. 3-51

Window Manager

• An important component within today's GUI shells is the

window manager, which allocates blocks of space on the

screen, called windows, and keeps track of which

application is associated with each window.

• When an application wants to display something on the

screen, it notifies the window manager, and the window

manager places the desired image in the window

assigned to the application.

• In turn, when a mouse button is clicked, it is the window

manager that computes the mouse's location on the

screen and notifies the appropriate application of the

mouse action.

Copyright © 2012 Pearson Education, Inc. 3-52

The kernel

• In contrast to an operating system's shell, the

internal part of an operating system is called the

kernel.

• An operating system's kernel contains those

software components that perform the very basic

functions required by the computer installation.

Copyright © 2012 Pearson Education, Inc. 3-53

File Manager

• One unit of the kernel is the file manager, whose job is to
coordinate the use of the machine's mass storage
facilities.

• More precisely, the file manager maintains records of all
the files stored in mass storage, including:

– where each file is located,

– which users are allowed to access the various files

– which portions of mass storage are available for new
files or extensions to existing files.

• These records are kept on the individual storage medium
containing the related files so that each time the medium
is placed on-line, the file manager can retrieve them and
thus know what is stored on that particular medium.

Copyright © 2012 Pearson Education, Inc. 3-54

File Manager

• Directory (or Folder): A user-created

bundle of files and other directories

(subdirectories)

• Directory Path: A sequence of directories

within directories

Copyright © 2012 Pearson Education, Inc. 3-55

Device Drivers

• Another component of the kernel consists of a collection

of device drivers, which are the software units that

communicate with the controllers (or at times, directly

with peripheral devices) to carry out operations on the

peripheral devices attached to the machine.

• Each device driver is uniquely designed for its particular

type of device (such as a printer, disk drive, or monitor)

and translates generic requests into the more technical

steps required by the device assigned to that driver.

Copyright © 2012 Pearson Education, Inc.

Device Drivers

• For example, a device driver for a printer contains the software

for reading and decoding that particular printer’s status word

as well as all the other handshaking details.

• Thus, other software components do not have to deal with

those technicalities in order to print a file.

• Instead, the other components can merely rely on the device

driver software to print the file, and let the device driver take

care of the details.

• In this manner, the design of the other software units can be

independent of the unique characteristics of particular devices.

• The result is a generic operating system that can be

customized for particular peripheral devices by merely

installing the appropriate device drivers.

0-56

Copyright © 2012 Pearson Education, Inc. 3-57

Device drivers

Accessing devices involves

the kernel interacting with

the I/O devices via a device

driver.

Device drivers can be

linked into the kernel

image and then are

available as needed.

Or they can be added into

the kernel as a separate

module and without

rebooting the kernel.

Copyright © 2012 Pearson Education, Inc. 3-58

Memory Manager

• Another component of an operating system’s kernel is the

memory manager, which is charged with the task of

coordinating the machine’s use of main memory.

– Such duties are minimal in an environment in which a

computer is asked to perform only one task at a time.

– In these cases, the program for performing the current task

is placed at a predetermined location in main memory,

executed, and then replaced by the program for performing

the next task.

• However, in multiuser or multitasking environments in which

the computer is asked to address many needs at the same

time, the duties of the memory manager are extensive.

Copyright © 2012 Pearson Education, Inc.

Memory Manager

• In multitasking environments, many programs and blocks

of data must reside in main memory concurrently.

• Thus, the memory manager must find and assign

memory space for these needs and ensure that the

actions of each program are restricted to the program’s

allotted space.

• Moreover, as the needs of different activities come and

go, the memory manager must keep track of those

memory areas no longer occupied.

0-59

Copyright © 2012 Pearson Education, Inc. 3-60

Getting it Started (Bootstrapping)

• We have seen that an operating system provides the software

infrastructure required by other software units, but we have not

considered how the operating system itself gets started.

• This is accomplished through a procedure known as boot

strapping (often shortened to booting) that is performed by a

computer each time it is turned on.

• It is this procedure that transfers the operating system from

mass storage (where it is permanently stored) into main

memory (which is essentially empty when the machine is first

turned on).

Copyright © 2012 Pearson Education, Inc. 3-61

Booting

• A CPU is designed so that its program counter starts with

a particular predetermined address each time the CPU is

turned on.

• It is at this location that the CPU expects to find the

beginning of the program to be executed.

• Conceptually, then, all that is needed is to store the

operating system at this location.

• However, for both economic and efficiency reasons, a

computer's main memory is typically constructed from

volatile technologies - meaning that the memory loses

the data stored in it when the computer is turned off.

• Thus, we need a means of replenishing main memory

each time the computer is restarted.

Copyright © 2012 Pearson Education, Inc. 3-62

Read-Only Memory and bootstrap

• A small portion of a computer's main memory where the CPU

expects to find its initial program is constructed from special

nonvolatile memory cells.

– Such memory is known as read-only memory (ROM) since its

contents can be read but not altered.

– More precisely, most ROM in today's PCs is constructed with

flash memory technology (which means that it is not strictly

ROM since it can be altered under special circumstances).

• The program stored in ROM is called the bootstrap.

– This, then, is the program that is executed automatically

when the machine is turned on.

– Its task is to direct the CPU to transfer the operating system

from a predetermined location in mass storage (typically a

magnetic disk) into the volatile area of main memory.

Copyright © 2012 Pearson Education, Inc. 3-63

Figure 3.5 The booting process

Copyright © 2012 Pearson Education, Inc. 3-64

Booting from a Disk in Windows 2000

Copyright © 2012 Pearson Education, Inc.

Modern boot loaders

• Modern boot loaders can copy an operating system into main

memory from a variety of locations.

• For example, in embedded systems, such as smartphones, the

operating system is copied from special flash (nonvolatile) memory;

• In the case of small workstations at large companies or universities,

the operating system may be copied from a distant machine over a

network.

• Once the operating system has been placed in main memory, the

boot loader directs the CPU to execute a jump instruction to that area

of memory.

• At this point, the operating system takes over and begins controlling

the machine’s activities.

• The overall process of executing the boot loader and thus starting

the operating system is called booting the computer.

0-65

Copyright © 2012 Pearson Education, Inc.

Booting from mass storage: why?

• You may ask why desktop computers are not provided with enough

ROM to hold the entire operating system so that booting from mass

storage would not be necessary.

• While this is feasible for embedded systems with small operating

systems, devoting large blocks of main memory in general-purpose

computers to nonvolatile storage is not efficient with today’s

technology.

• Moreover, computer operating systems undergo frequent updates in

order to maintain security and keep abreast of new and improved

device drivers for the latest hardware.

• While it is possible to update operating systems and boot loaders

stored in ROM, (often called a firmware update) the technological

limits make mass storage the most common choice for more

traditional computer systems.

0-66

Copyright © 2012 Pearson Education, Inc. 3-67

Firmware and BIOS
• In addition to the boot loader, a PC’s ROM contains a collection of software

routines for performing fundamental input/output activities such as receiving

information from the keyboard, displaying messages on the computer

screen, and reading data from mass storage.

• Being stored in nonvolatile memory such as FlashROM, this software is not

immutably etched into the silicon of the machine — the hardware — but is

also not as readily changeable as the rest of the programs in mass storage

— the software.

• The term firmware was coined to describe this middle ground.

– Firmware routines can be used by the boot loader to perform I/O

activities before the operating system becomes functional.

– For example, they are used to communicate with the computer user

before the boot process actually begins and to report errors during

booting.

• Widely used firmware systems include the BIOS (Basic Input/Output

System) long used in ―PCs‖, the newer EFI (Extensible Firmware Interface),

Sun’s Open Firmware (now a product of Oracle), and the CFE (Common

Firmware Environment) used in many embedded devices.

Copyright © 2012 Pearson Education, Inc. 3-68

Turn key systems

• Most special-purpose computers, such as those in household

appliances, have all of their software permanently stored in their

main memories where it is readily available each time the

device is turned on.

• Such systems are known as turn key systems since they are

ready to function with the flip of a switch or the turn of a key.

• With the rapid advances that are being made in memory

technology, it may soon be that many of the steps in the booting

process will become obsolete, and that general purpose

computers will approach turn key status.

Copyright © 2012 Pearson Education, Inc. 3-69

Operating Systems

• The History of Operating Systems

• Operating System Architecture

• Coordinating the Machine’s Activities

• Handling Competition Among Processes

• Security

Copyright © 2012 Pearson Education, Inc. 3-70

Process vs Programs

• The program itself is not a process

– A program becomes a process only when the executable is

loaded into main memory

– A program is a passive entity whine the process in an active

entity with a program counter assigned

• Two processes may be associated to the same program

– But they are considered two separate execution sequences

– If you invoke many copies of Firefox each of these is a separate

process (or thread)

Copyright © 2012 Pearson Education, Inc. 3-71

The concept of a process

• One of the most fundamental concepts of modern operating systems is

the distinction between a program and the activity of executing a

program.

• The former is a static set of directions, whereas the latter is a dynamic

activity whose properties change as time progresses.

• This activity is known as a process. Associated with a process is the

current status of the activity, called the process state.

• This state includes the current position in the program being executed

(the value of the program counter) as well as the values in the other

CPU registers and the associated memory cells.

– Roughly speaking, the process state is a snapshot of the machine

at a particular time.

– At different times during the execution of a program (at different

times in a process) different snapshots (different process states)

will be observed.

Copyright © 2012 Pearson Education, Inc. 3-72

Managing processes

• In a typical time-sharing computer installation, many

processes are normally competing for the computer's

resources.

• It is the task of the operating system to manage these

processes so that:

– each process has the resources (peripheral devices, space

in main memory, access to files, and access to a CPU) that

it needs

– independent processes do not interfere with one another

– processes that need to exchange information are able to do

so.

Copyright © 2012 Pearson Education, Inc. 3-73

Process Administration: Scheduler

• The tasks associated with coordinating the execution of

processes are handled by the scheduler and dispatcher within

the operating system's kernel.

• The scheduler:

– maintains a record of the processes present in the

computer system

– introduces new processes to this pool

– removes completed processes from the pool

• Thus when a user requests the execution of an application, it

is the scheduler that adds the execution of that application to

the pool of current processes.

Copyright © 2012 Pearson Education, Inc. 3-74

Process Administration: Dispatcher

• The dispatcher is the component of the kernel that

ensures that the scheduled processes are actually

executed.

• In a time-sharing system this task is accomplished by

time-sharing; that is, dividing time into short segments,

each called a time slice (typically no more than 50

milliseconds), and then switching the CPU's attention

among the processes as each is allowed to execute for

one time slice.

• The procedure of changing from one process to another

is called a process switch or a context switch.

Copyright © 2012 Pearson Education, Inc. 3-75

Interrupts
• The use of interrupts for terminating time slices is only one of many

applications of a computer's interrupt system.

• There are many situations in which an interrupt signal is generated, each with

its own interrupt routine.

• Indeed, interrupts provide an important tool for coordinating a computer's

actions with its environment.

– For example, both clicking a mouse and pressing a key on the keyboard

generate interrupt signals that cause the CPU to set aside its current

activity and address the cause of the interrupt.

– To manage the task of recognizing and responding to incoming interrupts,

the various interrupt signals are assigned priorities so that the more

important tasks can be taken care of first.

• The highest priority interrupt is usually associated with a power failure. Such an

interrupt signal is generated if the computer's power is unexpectedly disrupted.

The associated interrupt routine directs the CPU through a series of

"housekeeping" chores during the milliseconds before the voltage level drops

below an operational level.

Copyright © 2012 Pearson Education, Inc. 3-76

Figure 3.6 Time-sharing between

process A and process B

Copyright © 2012 Pearson Education, Inc. 3-77

Scheduler and dispatcher in action

• The effect of an interrupt signal is to preempt the current

process and transfer control back to the dispatcher.

• At this point, the dispatcher first allows the scheduler to

update the process table (for instance, the priority of the

process that has just completed its time slice may need

to be lowered and the priorities of other processes may

need to be raised).

• Then, the dispatcher:

– selects the process from the process table that has

the highest priority among the ready processes

– restarts the timer circuit

– allows the selected process to begin its time slice.

Copyright © 2012 Pearson Education, Inc. 3-78

Two processes sharing the CPU

Copyright © 2012 Pearson Education, Inc. 3-79

Context Switch

• When CPU switches to another process, the system must save the

state of the old process and load the saved state for the new

process

• Context-switch time is overhead; the system does no useful work

while switching

– Its speed varies from machine to machine, depending on the

memory speed, the number of registers which must be copied,

and the existence of special instructions (such as a single

instruction to load or store all registers).

– Typically, the speed ranges from 1 to 1000 microseconds.

• Time dependent on hardware support

• Context switching may become a performance bottleneck

– If there are more active processes than there are register sets,

the system resorts to copying register data to and from memory,

as before.

Copyright © 2012 Pearson Education, Inc. 3-80

Efficiency of time-sharing

• In closing, we should note that the use of time-sharing has

been found to increase the overall efficiency of a machine.

• This is somewhat counterintuitive since the shuffling of

processes required by time-sharing introduces an overhead.

• However, without time-sharing each process runs to

completion before the next process begins, meaning that the

time that a process is waiting for peripheral devices to

complete tasks or for a user to make the next request is

wasted.

– Time-sharing allows this lost time to be given to

another process.

Copyright © 2012 Pearson Education, Inc.

End of lesson 6

• Readings

– Book: chapter 3.

0-81

